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ABSTRACT  

Fatigue critical helicopter components are, in general, subjected to complex high frequency dynamic 
loading. Due to these high frequencies small flaws growing at relatively slow rates can propagate to 
failure in a short period of time. Consequently, the demonstration of damage tolerance for those 
components must include the analysis of near-threshold crack propagation, i.e. growth in the low-to-mid 
stress intensity factor range (ΔK) regime. This paper presents a fatigue crack growth analysis of a 
helicopter airframe component, which was used as part of a round-robin study into helicopter fatigue, 
using a non-similitude based crack growth law, termed the ‘generalised Frost-Dugdale law’. The 
component geometry, material data and complex loading spectrum were distributed to the helicopter 
structural analysts worldwide with the objective of assessing the capability of current structural analytical 
tools to predict fatigue crack growth and thus incorporate damage tolerance into helicopter design. The 
generalised Frost-Dugdale model utilised companion fatigue coupon data tested under a similar spectrum 
to derive the necessary two input parameters, which along with a finite element computed width 
correction factor, lead to good agreement between the prediction and the component’s experimentally 
derived crack growth. The example presented in this paper demonstrates how the helicopter industry 
(amongst others) can accurately apply damage tolerance design principles both in the initial design as well 
as to ensure continued airworthiness. 
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1. INTRODUCTION 

The use of linear elastic fracture mechanics (LEFM) methodology to characterise the growth of fatigue 
cracks in metals is well established in the design of aerospace structures, especially in the fixed-wing 
aircraft. However, there is very little work done on the application of fracture-mechanics to the rotorcraft. 
It is widely known that the task of predicting fatigue crack growth life on helicopter dynamic components 
is very difficult, due to their complex component configuration, characteristic of materials used and 
complex high frequency dynamic loading. The current design philosophy for helicopter rotary component 
is still based on the safe life approach, where manufacturers impose a life limit on their production parts. 
Safe life design is based on an assumption of linear cumulative fatigue damage (LCD), known as Miner’s 
rule [1]. The periodic nature of helicopter component loading is assumed to cause cumulative damage. 
The resulting damage is related to amplitude of the applied loading as well as the number of load cycles 
applied to the component. The allowable damage is ultimately related to aircraft flight profiles and flight 
times. Safe life analysis assumes that there are no pre-existing defects in the components.  

In an attempt to reduce the over-conservatism in the helicopter component life prediction, there is a 
growing interest in using the Damage Tolerance Design Methodology, which has been successfully 
implemented in airframe structures, to determine the fatigue life of helicopter dynamic components. The 
use of damage tolerance analysis for helicopter component design is almost non-existent prior to recent 



 

times. The damage tolerance philosophy assumes a deterministic process for fatigue fracture where a 
deterministic crack growth function, constant material properties and a specific initial (discontinuity) size 
(a preexisting flaw is assumed) are employed. This approach was found very useful and adequate for 
maintaining a high level of safety for operational aircraft and it can be readily applied to the design 
process of new aircraft structures. Lincoln [2] pointed out that the work performed on the HH-53C and 
HH-60A helicopter by the United State Air Force (USAF) has shown that the damage tolerance approach 
is viable for helicopters. In addition, the application of a damage tolerance based design philosophy to 
helicopter components will allow a better understanding of stress and loading these of dynamic 
components and allow optimisation of components that had originally a short fatigue life, as well as, 
shortening the life of components that had originally extremely long life to allow additional weight saving. 
The paper in ref. [2] contained the discussion and recommendations that are given for future damage 
tolerance assessment of existing helicopters and on the incorporation of damage tolerance capability in 
new designs. However, it can be seen that a considerable amount of work would be required before 
helicopter component risk assessment based on crack growth can be applied. 

Fatigue critical helicopter components are, in general, subjected to complex high frequency dynamic 
loading. Due to these high frequencies, small flaws growing at relatively slow rates (i.e. ~10-10 m/cycle) 
can propagate to failure in a short period of time. Consequently, the design against high-cycle fatigue 
failure must include the analysis of near-threshold fatigue crack propagation, i.e. Region I or growth in the 
low-to-mid stress intensity factor range (ΔK) regime (also known as microscopic region with crack 
dimensions ranging from 0.01 to 1 mm). During the last decades, the efforts of using LEFM methods for 
analysing near-threshold crack growth has pointed out the so-called ‘problem of short cracks’ [3-5]. 
Several issues concerning short crack growth in Region I have been identified: (i) da/dN higher than what 
would be predicted by a long-crack law, such as the Paris law [6] for a given ΔK; (ii) a decrease in da/dN 
with increasing ΔK; (iii) growth at ΔK values lower than the long-crack threshold; (iv) a growth rate 
strongly dependent on the material microstructure. This anomalous crack growth can be due to breakdown 
in continuum-mechanics-based LEFM conditions. Such ‘short crack’ phenomenon made the analytical 
predictions near the threshold fatigue regime extremely difficult and it is an area of interest of many 
researchers.  

Till now, the near threshold fatigue analysis could only be determined by empirical means, where the 
standard threshold data of ΔK are commonly determined for long cracks. Laws based on the governing 
similitude hypothesis assume that crack growth rate v ΔK  data is crack-size independent. However, the 
validity of LEFM-based near threshold fatigue analysis in the Region I, characterised by short cracks, has 
been challenged by several scientists in the field [7]. Predictions in the near-threshold region, using this 
similitude based approaches often give highly erroneous results [8, 32]. It has been argued that the 
assumptions of continuum mechanics and the ΔK concept are violated because of micro-structural 
features. However, the transition from valid to invalid conditions does not occur abruptly. Many 
mechanical parameters such as the range of J integral, ΔJ and the range of strain intensity factor, ΔKε have 
been used in attempts to resolve the problems encountered in near-threshold fatigue crack growth 
predictions. Each of them is only valid for the relatively narrow ranges of test conditions. Since the use of 
ΔK to characterise the fatigue crack growth, especially in Paris region has been successfully employed in 
many engineering applications, a single analysis methodology based upon the use of ΔK analysis to 
predict the near-threshold fatigue crack growth is desired. 

In recent years, the Australian Defence Science and Technology Organisation (DSTO)’s quantitative 
fractography (QF) examination of crack growth in Region I (for 0.01 mm ≤≤ a 10 mm) could not find any 
evidence to support the conventional ‘short crack’ effect. For example, Molent et al. [9] highlighted a 
smooth, continuous and monotonically increasing crack growth in their compendium of F/A-18 aircraft 
fatigue crack growth data. Their work, which examined more than 300 different cracks in various F/A-18 
related full-scale fatigue tests and the associated coupon test programs under spectrum loading, revealed a 
near log-linear relationship when plotted as logarithm of crack depth versus linear life. This relationship 
holds for crack growth from starting lengths of near microns up to lengths of 10 mm. This log-linear 
growth characteristic was first observed and reported by Frost and Dugdale [10] in their centre-notched 
constant amplitude fatigue loading experiments. Liu [11] subsequently confirmed the log linearity 



 

reported in [10] and in his review paper [12] he highlighted that for short cracks da/dN was proportional to 
the crack length. As such, a resurgent interest has arisen to develop a crack growth model that accounts for 
the smooth transition of micro- (Region I) to macro-cracking (Region II) as the small flaws or defects 
arising either from corrosion or manufacturing deficiencies enlarge, grow and form a large crack that can 
be seen by the human’s naked eye. It is believed that such a transition behavior can be achieved by 
introducing another mechanical parameter into the crack growth rate model. As such, Barter et al. [13] 
first proposed a ΔK-based crack size-dependence crack propagation law, termed ‘generalised Frost-
Dugdale law’ or ‘non-similitude based growth law’.  

To adequately address the above issues relating to the near threshold fatigue crack growth using the 
damage tolerance approach, Cansdale et al. [14] initiated the ‘Helicopter Damage Tolerance Round-
Robin’ challenge study in the ‘Workshop on Fatigue Design of Helicopter’ in May 2002. This round-robin 
problem was distributed to the helicopter experts worldwide with the objective of assessing the current 
existing fracture mechanics based tools to analytically predict the fatigue crack growth in round-robin 
component. 

 

2. CRACK GROWTH RATE MODELS 

2.1. Fracture mechanics based crack growth laws   

The study of fatigue crack growth begun in early 1950s. One of the most important contributions was the 
correlation of the stress intensity factor, K with the fatigue crack growth rate, da/dN. In 1961, Paris et al. 
[6] postulated the use of Kmax to describe fatigue crack propagation. Subsequently in early 1963, Liu [15] 
published the first paper that implied that da/dN could be related to stress intensity factor range, ΔK, 
where he implied that for a wide plate, da/dN is linearly proportional to ΔK2. Shortly after that, Paris and 
Erdogan [16] found that plots of da/dN against ΔK gave straight lines on log-log scales for Region II (also 
known as ‘Paris region’) in a typical crack growth rate curve for aluminium alloys. This led to the so-
called ‘Paris growth law’, viz:  
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Here, m and C are experimentally determined material constants and the prediction of the fatigue life is 
very dependent on these constants. Generally, m is taken 3 for common aluminium alloys (such as AL 
7075-T6 and AL 2024-T351) and structural steels. While the constant C can be estimated using a 
measured crack propagation curve. Since fatigue crack propagation measurement requires precise 
equipment, the determination of the constant C is usually empirical and relatively complicated. 

The Paris law currently provides the basis for most of the life predictions of structures made using the 
LEFM-based approaches and relies on the validity of the similitude hypothesis. This similitude concept 
indicates that at the same value of ΔK and Kmax, the crack tip stresses and strains are the same, regardless 
of the in-plane specimen geometry and applied load. It was later found that the crack growth rate curve is 
not linear for all ranges of ΔK. A plot of log da/dN versus ΔK gives a sigmoidal curve as shown in Figure 
1. The curve may be divided into three regions, i.e. (i) Region I: initiation and threshold, (ii) Region II: 
stable crack growth (also known as ‘Paris region’) and (iii) Region III: unstable fracture. The first two 
regions constitute the primary portion of the fatigue life and both prove to be of primary interest from the 
theoretical and practical points of view. Region III crack growth life is very short compared to the total 
fatigue life, so it is not important from a practical point of view. Therefore, modelling of the unstable 
fracture region will not be discussed further. 



 

 
Fig. 1 Schematic illustration of typical fatigue crack growth rate data for aluminium alloys 

 

Even though Region I has been extensively studied in recent years, a complete understanding of 
phenomenology, mechanisms and physical nature of the processes in this Region I is far from being 
achieved. Many studies related the physical features of Region I with a threshold value ΔKth where the 
crack growth rate goes asymptotically to zero as ΔK approaches this ΔKth. Here, an operational definition, 
based on the ΔK corresponding to a rate of 10-10 m/cycle, has been established [17]. A physical 
explanation of the fatigue threshold is that if nominal load ranges are very small, then local cyclic strains 
around the stress concentrator do not exceed the elastic range. This means that no plastic deformation 
(dislocation movement) occurs around the grain scale stress concentrators, micro-cracks do not nucleate 
and local damaging of material does not develop. As such, ΔKth serves as an idealised model of the 
physical threshold from the viewpoint of LEFM. 

The crack growth relations in the threshold region have been proposed by Donahue et al. [18] as:  
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where Ĉ  is constant. Eq. (2) is one of the most popular modifications to the Paris law to account for the 
fatigue threshold. The value of ΔKth in Eq. (2) is very difficult to measure experimentally as it can be very 
different in value and in nature. Such inconsistencies can lead to non-conservative design and reliability 
assessments. Nevertheless, a number of theoretical models have been proposed to analytical determine the 
ΔKth value. One of them is the well-known El Haddad model [19] which describes the influence of the 
crack length a on ΔKth. The El Haddad model has more than two experimentally determined constants, 
which can vary depending on micro-structural features, material properties, loading condition, 
environment, etc. These circumstances promoted the development of an alternative engineering approach 
to the formulation of improved methods to predict fatigue lives of structure by combining the crack 
growth in Regions I and II. One of the promising mechanics approaches to describe the growth in the 
near-threshold regime involves the concept of non-similitude. This concept suggests that the increment in 
the crack length per cycle (da/dN) is not solely governed by ΔK, but is also dependent on another 
mechanical parameters, such as crack size, a, or nominal stress, σn. 

 

2.2. Non-similitude based crack growth modelling 

The Paris equation was not the first law describing crack growth. The first law (according to Frost et al. 
[20]) can be attributed to an early Australian DSTO researcher, Head [21]. Subsequently, Frost and 
Dugdale [10], using Head’s observation of self-similar crack growth, expanded Head’s law and reported 
that crack growth for centre cracked panels tested under constant amplitude loading could be described via 
a simple log-linear relationship, viz:  
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where N is the ‘fatigue life’, β is a parameter that is geometry, material and load dependent, a is the crack 
depth at time N and a0 is the initial crack-like flaw size. This linear relationship between ln(a) and N has 
also been reported, for physically short cracks, by a large number of researchers including Harkegard, 
Denk and Stark [22],  Nisitani et al.  [23], Kawagoishi et al. [24], Caton et al. [25], Murakamia and Miller 
[26], Polak and Zezulka [27] and Tomkins [28]. Indeed, Polak and Zezulka [27] found that this 
approximation held for sub-micron cracks.  

Eq. (3) can be rewritten in terms of da/dN as: 
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where C~  is empirical constant derived from experimental data and the stress exponent, n was found to be 
3 from the Frost and Dugdale’s [10] experimental results for various metals and alloys under constant 
amplitude loading. Hence, Eq. (4) is sometimes also referred to as the ‘stress-cubed’ law due to its cubic 
stress dependency. Here, Eq. (4) represents a crack size dependence law where it was suggested that the 
propagation rate of a fatigue crack should be proportional to the current size of the crack. This differs from 
the similitude based laws that are based on Eq. (1).  

It has been shown more recently that Eq. (4) can be effective in correlating small fatigue crack growth. 
For example, Nisitani et al. [23] showed that Eq. (4) successfully correlates small crack growth in 0.45% 
C steel and an Fe -3% Si alloy, where the cracks monitored were ~0.01 to 2 mm in length.  

However, Eq. (4) has limited application to small cracks lengths only (when compared to the net-section 
size). It may not be applicable if applied to large crack lengths (when compared to the net-section size), 
different crack geometries, different component geometries, or; component loading/boundary conditions, 
due to the absence of a geometry and loading/boundary condition factor in the model. 

To overcome these limitations, Barter et al. [13] first proposed a modified version of ΔK-based Frost-
Dugdale model as given in Eq. (5). In ref. [13], they presented a range of examples that support the Frost 
and Dugdale’s hypothesis that (i) as a first estimation, the ln(a) versus N relationship can be taken to be 
linear and that this is true both for constant amplitude and spectrum loading. Additionally, they have 
shown that (ii) for a given spectrum the variation in crack growth rate is approximately dependent upon 
the stress cubed, which means the stress exponent should be 3. Both remarks (i) and (ii) from their 
numerous experimental observations have suggested a possible generic growth law, termed the 
‘generalised Frost-Dugdale law’, of the form [13]: 
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where C  is a material constant, γ is approximately 3, and ΔK is the crack driving force. Spagnoli [29] has 
also proposed a similar law as Eq. (5) where she suggested that the crack surface can be modeled as self-
similar invasive fractals. Eq. (5) implies that the fatigue crack growth in Region I and II essentially does 
not conform to the similitude concept, because the crack growth rate of the crack is based on the applied 
values of both ΔK and crack size. This law is formally contradictory to the Paris similitude based growth 
law. As such, conventional continuum LEFM rules do not apply to the Eq. (5). Indeed, in the slow growth 
regime crack growth in rail steels [30] and several aerospace alloys [13, 30, 31], can be well described by 
the generalised Frost-Dugdale law. 

 



 

3. DESCRIPTIONS OF THE HELICOPTER ROUND-ROBIN PROBLEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

   

 

 

 

 

Fig. 2 Schematic diagram of round-robin component (all dimensions are in mm) 

 

The ‘Helicopter Damage Tolerance Round-Robin’ challenge problem was recently proposed by Cansdale 
and Perret [14] and Irving, Lin and Bristow [32]. The aim of this round-robin study was to compare the 
analytical prediction made using the damage tolerance approach with those experimental results on the 
same material in the same component geometry and subjected to the same spectrum. The round-robin 
helicopter component was a flanged plate with a central lightning hole made of the 7010 alloy, see Figure 
2. It was subjected to a representative helicopter spectrum loading, called Asterix. The round-robin 
experimental results were not provided to all the participants, but all the essential crack growth parameters 
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were given, such as initial crack length, 7010 alloy crack growth rate data and the surface values of stress 
intensity factor solutions. A range of predictions were submitted to the round-robin organiser using a total 
of 8 different software packages [32]. None of the 27 predictions received matched the test data, 
especially in the early stage of the crack growth where the predicted initial growth from the 2 mm defect 
was very slow. Newman et al. [33] subsequently used the ‘average’ stress intensity factors obtained from 
a three-dimensional BEASY analysis in his prediction. Newman et al.’s analytical predictions were made 
using FASTRAN-II, which is based on the ‘plasticity-induced’ crack closure concept [34], and they 
agreed very well in the early stages of crack growth. But the model predicted faster crack growth through 
the thin (2 mm) section. The predicted crack growth life at a crack length of 25 mm was 30% short of two 
test results conducted under the Asterix helicopter spectrum. 

In this present paper, attempts were made to analytically predict the round-robin complex crack growth 
using the concept of non-similitude where it was proposed that the fatigue crack growth is essentially 
crack-size dependent, as discussed earlier. 

 

3.1. Crack configuration 

The study required the participants to predict crack growth from a 2 mm (radius) corner defect on the 
inner edge of the large central hole to the failure, where failure was defined as a projected surface crack 
length of 25 mm. A schematic diagram of the crack growth evolution is given in the Figure 3. As can be 
seen in Figure 3, the round-robin problem involved rather complex crack configurations during the 
transition from 6 mm reinforced hole-edge to a 2 mm thick web, i.e. from a corner crack (3D crack) to a 
normal-through crack (2D crack). It should be noted that the crack was seen to grow for a considerable 
part of its life as a part through crack. The crack length, c, is measured along the surface. 

 
Fig. 3 Schematic diagram of the round-robin crack growth evolution (all dimensions are in mm) 

 

3.2. Material 

The round-robin component was made of AL 7010-T73651 (also known as AL 7010-T7451). It is a high 
strength/high toughness and stress corrosion cracking resistant aluminium alloy. Tensile test results 
indicate the average room temperature tensile strength was 502 MPa and the yield strength was 440 MPa 
for longitudinal grain orientation test specimens. For the same test conditions, the tensile elongation 
(ductility) was given as 13%. The average toughness at 22°C for a (L-T) orientation test specimen was 
33.4 MPa√m. As in [14, 32], the round-robin coupon was assumed to have a Young’s modulus of 70,000 
MPa and a Poisson’s ratio of 0.3. 

 

3.3. Helicopter load spectra 

The Asterix load sequence used in this study was derived from strain data measured on a helicopter lift 
frame. The maximum and minimum normalised stress points in the spectrum were given as 100 and -4 
respectively. The normal distribution for the stress ratios (as given in [35]) indicates that the stress ratio of 
0.8 dominates the load spectrum, which indeed is an extremely high stress ratio spectrum with some 
negative stress ratio excursions as shown in Figure 4. The Asterix spectrum represented 190.5 flights or 
140 sorties and composed of 371,610 cycles. The largest far field stress in the spectrum was set to 130 
MPa. 



 

 
Fig. 4 Asterix spectrum loading 

 
4.  STRESS INTENSITY FACTOR ANALYSIS 

In the ‘Helicopter Damage Tolerance Round-Robin’ exercise, participants were supplied with a stress 
intensity boundary correction factor, F (for the crack at the flange surface of the round-robin component 
from 2 to 35 mm long), derived from three-dimensional finite-element analysis, as shown in Figure 6 (a 
dark blue continuous curve). The majority of the predictions under-predicted the initial phase of crack 
growth (i.e. crack propagation in the central 6 mm thick flange) using the provided stress intensity factor 
solutions. Hence, the validity of the provided compliance F function to represent the test configurations 
has been questioned by several researchers [33, 35]. Using the limiting values of the stress concentration 
factor based on the net-section stress calculated by Tada et al.[36] and Newman and Raju [37], Newman 
[33] concluded that the stress intensity factor solution from BEASY is most likely the correct solution for 
the round-robin for the initial crack growth phase. Newman’s BEASY F solution is shown in Figure 6 (a 
pink continuous curve). It was noticed that there is a significant difference in the 2 to 5 mm crack size 
range between the sponsor’s round-robin and Newman’s BEASY F solutions. 

Initial crack growth is undoubtedly an importance crack propagation phase in fatigue life estimation from 
an engineering point of view, because it will significantly influence the end results. Due to the difference, 
authors conducted a separate independence finite element analysis (FEA) to calculate the 3D corner crack 
(2 to 5 mm) stress intensity factor solutions, using a new computational program, called FAST (FAilure 
STructure Analysis), developed by several Australian Monash University researchers. The FAST 
computer code uses the Vijayakumar and Atluri’s 3D stress field formulation to estimate the 3D stress 
intensity factor solution. It should be noted that the polynomial formulation used by Vijayakumar et al. 
[38] to define the stress field is not central to this study, so it will not be further discussed in this paper,  
for more details see [38].  

Symmetry considerations mean that it was only necessary to model half of the structure, as shown in 
Figure 5. The model was hex-meshed and consisted of 268,478 nodes or 61,962 9-noded CHEXA 
elements. It was subjected to a peak (remote) load which gave 130 MPa at the net section of the 
symmetrical plane. The model was then imported into the NEi/NASTRAN to compute the resultant stress 
field. The computational analysis took 1351.7 seconds (equivalent to 23 minutes) CPU time to complete 
under a Linux platform.  

As can be seen from Figure 3, the round-robin fatigue crack initiated as a corner crack, grew across the 
thickness and then subsequently transformed into a through crack. It involved a rather complex crack 
evolution, especially at the transition phase (between the corner 3D crack and normal-through 2D crack). 
However, cracks usually have a tendency to quickly become normal-through-thickness cracks once they 
reach the new free surface. Therefore, for the purpose of simplicity and conservativeness in the crack 
growth life analysis, we used the stress intensity factor solutions computed from the FAST program to 
predict 3D corner crack growth at 6 mm thick section (i.e. growth from 2 to 5 mm). While in the thinner 



 

section (i.e. growth from 5 to 25 mm), we used the original round-robin stress intensity factor solution 
(provided by the round-robin sponsor). This has resulted in a tuned round-robin F solution as shown in 
Figure 6 as a red continuous curve. A significantly large variation of F solutions between the sponsor’s, 
BEASY’s and FAST’s solutions was observed between crack lengths of 2 to 3 mm. As the crack 
propagated, the difference between the FAST’s and sponsor’s F solutions gradually diminishes and 
eventually merged at a = 4 mm onward. 

 

Fig. 5 Nominal stress distribution of round-robin crack configuration at the crack face 

 

 
Fig. 6 F solutions for the round-robin crack configuration as a function of surface crack length 

 

5. FATIGUE CRACK GROWTH LIFE PREDICTIONS 

Cansdale et al. [14] and Irving et al. [32] presented the crack length histories for two test specimens. The 
starting defect in specimen number 1 was a spark machined quarter circular corner crack of 2 mm radius 
located at the hole edge. In test 2, the defect radius was 1.5 mm and the defect was grown as a fatigue 
crack under the Asterix spectrum up to 2 mm radius and crack growth data were recorded from this point 
up until failure. From Figure 7 it can be seen that there was little difference in the crack growth histories. 
Both start at a moderate growth rate which steadily increases to a fairly rapid rate and was then followed 
by a much slower rate of crack growth. Those test data were used to validate the predicted crack growth 
lives. 



 

Figure 7 shows selected predictions submitted by several participants of the round-robin study. It is seen 
that not a single similitude based prediction followed the same qualitative crack growth behavior as 
observed in the test data, where most of them exhibited slower crack growth rate at the early stage of 
crack growth and significantly faster growth rate in the 2 mm thick section than the test data. However, 
the majority of the predictions at the failure (which was defined as at 25 mm crack length) are close to the 
test data. Newman et al.’s round-robin prediction made with the BEASY average stress intensity factor 
solutions gave good agreement with the test data, typically at the early stages of the crack growth, see 
Figure 8. However, the crack growths at the thinner section (2 mm thick) were too fast. The final flight 
hours at the 25 mm crack length was 30% shorter than the given test data. Please bear in mind that the 
previous predictions including the one made by Newman et al. [33] were all based upon the concept of 
similitude, i.e. in a similar form of Eq. (1).  

 
Fig. 7 Several predictions submitted to the round-robin organiser [32] 

 

The present paper is concerned with the application of the generalised Frost-Dugdale law, as given in Eq. 
(5), to study fatigue crack growth under a typical helicopter load histories in AL 7010-T73651. At this 
point it should be noted that in [39] ΔK was defined as ( ) aO πσσβ −max , where oσ  is the crack-opening 
stress, and it was necessary to adjust the constraint factor, α as the crack grew. In the present study where 
ΔK was kept as ( ) aπσσβ minmax − . Furthermore, in this study there were only two material constants, i.e. 
γ and C  in Eq. (5), and their values were kept constant throughout the entire load history. 

It is known that the Paris and generalised Frost-Dugdale models are of a different form; thus the crack 
growth parameters are not interchangeable [40]. The constant C and m of the Paris model can be estimated 
using the conventional similitude-based LEFM approach (i.e. da/dN versus ΔK curve), which rely on 
constant amplitude (CA) fatigue data. However, such a method can not be directly applied to the 
generalised Frost-Dugdale model. Further studies and more tests are needed to establish a new method to 
experimentally estimate the value C  of the non-similitude based generalised Frost-Dugdale equation from 
CA fatigue data.  

One of the possible approaches is plotting CA fatigue data by log-log da/dN×√a versus ΔK3, whereC  can 
be obtained from the y-intercept of the curve. The authors are currently investigating this approach for 
crack growth in AL 7075-T6 and AL 2024-T351 aluminium alloys where CA fatigue data of these two 
materials are widely available in the online literature. Unfortunately, this da/dN×√a versus ΔK 3 approach 
has not been studied in AL 7010-T73651 material because the crack length parameter (i.e. a) of the AL 
7010-T73651 CA fatigue data were not being provided by the round-robin organiser (only da/dN versus 



 

ΔK fatigue data were available). Indeed, the crack length parameter plays an important role in the non-
similitude based crack growth prediction, where the fatigue growth rate was suggested to be crack size-
dependent. 

For the purpose of simplicity in the present analysis, the value of C  was determined by using a simple 
curve fitting technique, where C  was manually adjusted to match the 2-to-4 mm corner crack round-robin 
test data. This approach yielded a value of =C 1.28×10-11. This value of C  value was then used to predict 
the rest of the fatigue crack growth, viz the growth from 4 to 25 mm. Whilst γ was taken to be 3 as a cubic 
stress dependency was assumed.  The resultant predictions are given in Figure 8. 

 
Fig. 8 Comparison of the round-robin test data and predictions 

 

6. CONCLUSIONS 

As shown in Figure 8, the generalized Frost-Dugdale law produced a crack length history curve that 
matched the round-robin test data extremely well. 

Newman et al. [33] pointed out that:  

 ‘The early stages of crack growth compared very well with the test data. But, again, the crack 
 growth rates in the 2 mm thick section were too fast’  

This shortcoming is largely removed in the present study, where the crack growth in the 2 mm thick 
material section matched the average of the two tests exceptionally well. Moreover, the predicted life at 
failure (i.e. at mma 25= ) was only 15% shorter than the average test results.  

It should also be noted that interest in this problem was kindled due to the conclusions reached by US 
Army researchers Vaughan and Chang [35], who used AFGROW and NASGRO, who stated: 

(i) ‘It is evident that the crack growth was under-predicted for the crack length below 5 mm and is 
 over-predicted when crack length is more than 10 mm.’ 

(ii) ‘We believe more research; especially in the area of modeling crack growth near the crack growth 
 threshold and determining experimentally the crack growth threshold values are needed.’ 

 

The present crack growth law was specifically formulated to point (ii) [30, 41] and its ability to predict 
crack growth history for this complex and challenging problem is particularly pleasing. Although the 



 

generalised Frost-Dugdale law has been shown to perform very well in the present helicopter round-robin 
fatigue crack growth prediction, a reliable method to experimentally estimate C  from the material CA 
crack-growth-rate data is yet to be established.  
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